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VISCOELASTIC PROPERTIES OF ENTANGLED POLYMERS.

IV. BINARY BLENDS OF MONODISPERSE HOMOPOLYMERS
by
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\\V ' ABSTRACT

In a previous publication from this laboratory, the Rouse-Bueche-
Zimm molecular theory of viscoelasticity has been extended by using a
transient network model to apply to monodisperse polymers with chain E
entanglements. Effects of the entanglements were modeled both by the
enhanced frictional coefficients and by the additional elastic couplings
resulting from the transient entanglement network. For binary blends
consisting of two monodisperse polymers with different molecular
weights, additional modifications are now required to predict their
linear viscoelastic behavior. It is recognized that entanglements
not only may form between chains of the same lengths, but also between
those of different lengths. For the latter case, the longer chain

will in fact have the frictional coefficient of the shorter

chain at the point of entanglements. The frequeney of such
interactions is assumed to be proportional to the weight ratio of

the respective component chains in the blend. Equations of motion are
formulated for each component and solved numerically for the relaxation

spectra. Linear viscoelastic parameters such as the dynamic ;
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mechanical moduli, stress relaxation moduli, and zero shear
viscosity can then be computed for the blends By linear
summation of those of the components. The reduced steady
state shear compliance of the blends can also be computed

from knowledge of the component relaxation times. Results

are found to be in excellent agreement with literature data on

polystyrene, poly(dimethyl siloxane) and poly (methyl methacrylate).

INTRODUCTION

The molecular theory of viscoelasticity for isolated
polymers expounded by Rouse (1), Bueche (2), and Zimm (3) has
previously been extended by a number of workers (4-9) to predict
the viscoelastic properties of bulk polymers with molecular
weights exceeding their critical entanglement molecular weights,
Mc. In recent series of publications from this laboratory (10-12),
several models were considered which incorporate the effects
of enhanced friction and elastic coupling of the entangled
chains. The most successful, and intuitively most reasonable,
model envisions the entangled systems as forming a three dimen-
sional transient network (12). The predicted linear visco-
elastic properties for monodisperse entangled polymers were
found to be in excellent agreement with literature data for a
number of systems.

Attempts to describe the viscoelastic properties of polymer
blends from those of their known monodisperse fractions are
motivated by its potential engineering applications to the mixed
system. In addition, an understanding of the multitudinous intecr-

actions among the components may provide a possible means toward
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predicting the viscoelastic properties of the polydisperse

polymers. A number of workers invoked some empirical blending
rules to obtain the relaxation spectra of mixtures from their
constituents (13-18). However, polymer molecules should behave
differently in a blend than in their pure state because of the
interactions with the coexisting components of different chain
lengths. The response and motion of the fractions must therefore
be mutually affected by all the components present in the blend.
The resulting relaxation spectra associated with any given
component must be different in a blend from that in the pure,
unmixed state. Merely mixing the unmodified relaxation spectra
of the components to form the relaxation spectra for the
blend without taking into account of the aforementioned
mutual interactions between the components would be inadequate
in describing the viscoelastic behavior of polymer blends.

In this work, we shall apply the transient network model
(12) to binary blends by incorporating the effect of the co-
existing components on chain dynamics. We are then able to
obtain the modified relaxation times for each component. The
linear viscoelastic properties of the blends are subsequently
obtained by summing properties of the corresponding component

calculated by the modified relaxation times.
THEORY

In a polymer blend made of monodisperse fractions whose
molecular weights exceed the critical molecular weight, all
the polymer molecules entangle with their surrounding neighboxs

to constitute a three dimensional network structure. The
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difference between this kind of network and the ones formed

by the monodisperse components alone is that in the blend
entanglements may be formed from chains of different lengths.
The chain dynamics in these systems may be expected to differ
significantly from the monodisperse polymers.

Following the transient network model for monodisperse poly-

mers, the equation of motion for an unentangled bead B is (12)

s _ kT 3lny _ 3kT

(-x * 22X, =R o) (1)
x Ip % fa<b§> k+1 k  Tk-l

Ke
]
<

where k#0,N, N is the total number of beads in the chain and
<bg> is the mean square end-to-end distance of a statistical
segment, Xy and *k are respectively the x-component of the

coordinates and velocity of the kth bead, Vi is the velocity

k

of the medium surrounding the kth bead, f_ is the frictional

B
coefficient of the unentangled bead, and V¥ is the segmental
distribution function.

For an entangled bead A, the corresponding equation

assumes the following form:

KT 3lny _ _ 3KT

& =V - (-x R )
j X, f;_ %o fA.<b2> j+1 Xj j=1
3 g 3 TR
Ne

—3kT E o TR ¢ (2)
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where Eji = -I—J-:'{T (3)
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and j#i#Fk, fA is the frictional coefficient of the entangled

J
bead at xj. The fourth term on the right-hand side of Eq. 2

accounts for the elastic coupling forces acting between all
pairs of Ne entangled beads (12). They are inversely propor-
tional to the interbead distance as shown in Eq. 3. & is a

parameter to account for the fact that the entanglement is not

as effective as a permanent crosslink in transmitting force,
since entangled chains can slip by each other. 1Its value is
between 0 and 1. Throughout the calculations, the enhanced
frictional coefficient fA. is assumed to have the high-friction-
inside distribution, i.e.? entangled beads near the chain middle
have higher frictional coefficients than the ones at the chain
ends. This type of distribution is not only intuitively reason-
able, but also has been found to fit the experimental data very
well for monodisperse polymers (12).

In a polymer blend made of monodisperse fractions having

different molecular weights, further modifications of the equation

of motion must be imposed. For simplicity the following derivation

will be given for a binary blend. Extension to multiple blends

can be similarly analyzed. We begin by assuming that the blend

is a homogeneous one, and shows no evidence of microphase sepa-
ration. This assumption may be considered valid for the type of
blends under consideration , i.e., blends of different molecular
weight fractions of the same polymer. The absence of heterogeneous
domain formation is one of the basic tenets of the RBZ model.

For a given component chain in a binary blend, it can form en-
tanglements with another chain of the same length or that of

a different length. The probability of entanglement formation

e
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between chains belonging to different components and those belonging
to the same component in a well-mixed blend is expected to be propor-
tional to the abundnace of the components if we assume that the ten-
dencies for chain segments to entangle are the same irrespective of

the chain lengths as long as they exceed the critical molecular weight.
The ratio of inter-component and intra-component entanglements is
therefore dependent upon the composition of the blends, being propor-
tional to the weight ratio of the components according to our assumption.
Here, inter-component entanglement is defined as entanglement formed
between two beads belonging to chains of different lengths, and intra-
component entanglement corresponds to that between chains of the same

length.
Entanglement formation restricts chain motion of both chains at the

entangled point. The extent of retardation is the same for both chains.
At an inter-component entanglement, motion of the longer chain is
facilitated because it is entwined with a shorter chain. This serves

to reduce the frictional coefficient of the longer molecule at the inter-
component entanglement point. 1In other words, the longer molecule now
has the smaller frictional coefficient previously associated with the
shorter molecule while the frictional coefficient of the shorter molecule
remains unchanged. This is a reasonable assumption, since the frictional
coefficients must be the same for both beads from either chain at the
pcint of entanglement. Because of the greater mobility of the shorter
chain, the entangled beads on both chains now are less restrained. We
can now write the equation of motion for such a system in matrix

notation as:
s WP . =1 3lny _ -1
“Ve -0 B B9 % (4)

where X and X are column vectors of velocity and position of the beads

2 XK.

respectively, V: is the x-component of the velocity of the surrounding

4 KT : ; e 3kT -1
D = =
medium, B f; is the diffusion coefficient, oB :;7:;— and 9
O B




is the inverse of the diagonal matrix

N
D: r
1 O
(52)
(5
64
1
13 = t .(GI) (5)
O g
o |
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fa
where <s§ =+ and f}I\ now is the modified high-friction-

B J
inside distribution of the enhanced frictional coefficients.

For a given component in a binary blend, a number of the 6;'3
are chosen randomly to be replaced by those corresponding to
the other component so as to represént inter-component entan-
glements. The frequency of such exchange is proportional to
the amount of the latter component present in the blend. ge is
the modified version of the nearest-neighbor matrix for an en-

tangled polymer. As an example, the form of Ze for a chain with

alternating entangled and unentangled beads is:

g N~
1 =3 0 0 0 0
-1 2+Y2 il ! €54 0 “€g -
Zg = 0 -1 2 -1 0 0 SO O L
0 “€42 -1 2+y4 -1 ~€46
0 0 0 -1 2 -1 Vs




where Yy = E rij

j=1 (7)
j#(i~1), i, (i+1)

We can write a matrix equation for each component in the
blend and, upon solving it, obtain the relaxation times of the

component given by

= (8)

where yp is the p-th eigenvalue of D—1 Ze' The interactions

between components have been incorporated into the matrix equa-
tions, the resulting component relaxation times are therefore
the modified relaxation times. The degree of modification
depends on the composition as explained before, the calculated
relaxation times for the components hold true only for the

particular composition for which the calculations have been

carried out. The relaxation times for the same component polymer

chain vary with the composition of the blend.

Further refinement must be introduced to our basic theore-
tical framework upon recognition of the fact that these inter-
component entanglements can take place at different positions
along a given chain. Since we have adopted the high-friction-
inside distribution as our basis, replacing frictional coeffi-
cients means utilizing a different set of numbers when the en-
tanglements occur at different positions along both chains.

Two approaches can be employed to tackle this problem.




The first method is to select randomly the beads whose
frictional coefficients are to be changed, and then calculate the
relaxation times from which the various viscoelastic properties
can be found. The whole procedure is repeated many times and the
resulting viscoelastic properties are averaged in an attempt to
produce a good representation of the system. This is the "post-
averaging" method.

The second method assumes that all the entangled beads along

a given chain have equal probability of forming intercomponent

entanglements with any of the entangled beads of the other components.

As an example, consider a 50/50 weight percent binary blend. A
given entangled bead on a given chain is involved in inter-component
entanglement half of the time and intra-component entanglement the
other half of the time over a long period of observation.

Equivalently, for a mixture containing a huge number of molecules,

for the same entangled point, half of the molecules are involved

in inter-component entanglement formation and the other half in intra-

component entanglement at any given instant. We can therefore
"pre-average" the frictional coefficients and use the resulting
average to set up the matrix equations as a representation of the
collection of chains in the mixture.

Suppose that our example of a 50/50 (by weight) binary
blend is made of components having 10 and 20 entanglements
respectively. Based on the "equal’entangling tendency" assumption,
five out of the ten entanglements in the shorter component are

involved in inter-component entanglements on the average, and




ten out of twenty for the longer component. The post-averaging

method randomly selects ten of the é;'s in the D matrix correspond-
ing to the longer component and replaces them by those corresponding
to the shorter component. The inserted values are also picked
randomly from the 5;'5 of the shorter components. The resulting
viscoelastic parameters are calculated and stored i1n the memory

bank, and at the end of the computation, the stored data are averaged
to obtain the "post-averaged" properties.

I[f the random selection process 1s repeated many times, event-

ually any entanglement along the longer chain will assume 1ts original
frictional coefficient half of the times, while tor the other half

of the times it will have frictional coetficients belonging to the

shorter component. Since we adopted the high-friction-inside dis-

tribution (12), i.e. £} = I, where I is the position of the
]

entanglement counted from chain ends, the proposed preaveraging

method assigns the frictional coefficirents according to the following

rule: Nc /2

S 2 4

£, = WIT 4 W LY/(N_ /2)

j L= “k
when Ne 1s even; and

k N /2
Sk

k 4 4 v 4

£.0o0= W I W (N /2 +1)° +2¢( X LY)] /N,

Aj B K ey ey €y

when N is odd. 1In egs. 9 and 10, wj is the weight fraction and N, e
K : ]
is the number of entanglements of the longer component while sub-

s —

script k refers to the shorter component in the blend. Eq. 9 ensures

o

that the distribution is still high-friction inside while the eftect

of inter-component interactions 1s adegquately taken into account.




For our example of a 50/50 blend, equation 9 is just:
: £ L
£ = 0.5 (I") + 0.5 3 71§ (11)

Solution of the post-averaging method i1s time-consuming and
expensive in the cost of computations. One case has been tried and
was found to approach the pre-averaging result as the number of
rerteration of the random selection process increases. The pre-
averaging method 1s thus chosen for the subsequent calculations.

Once the modified relaxation times are found, they can be
used to calculate all the linear viscoelastic properties such as
relaxation modulus, dynamic moduli, steady-state shear compliance
and zero-shear viscosity by the well-known relations (10). The
blend properties, except for the steady-state shear compliance,
are just the linear sums of the corresponding properties of compon-
ents because the relaxation times for each component are obtained
from the already modified matrix equation to meet conditions
existing at the particular composition considered. The steady-state
shear compliance of the blend is obtained from the resulting relax-
ation times of the components by the appropriate equation to be shown

later.
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RESULTS AND DISCUSSION

12, f

In comparing the theoretical prediction with experimental

data, one of the computed curves was shifted in coordinates

until the terminal regions overlapped with data. All sub-

sequent curves were not adjusted further once the fitting

parameters have been chosen. The dynamic storage and loss

shear moduli were computed by:

2 2
l w T
' = —_— ——L
e p l+u)lp

W

A o P
G" (w) =g a0 73
e p 1l+w lp

Figure 1 compares the theoretical results with data on
polystyrene blends. The solid curves are the computed curves.
The symbols represent experimental data by Onogi et al. (19).
To calculate the number of entanglements for a given mono-
disperse system (Ne), M, is assumed to be 1.7x10

The two curves on the outside are for the pure components

of molecular weights of 5.9x104

We can see that the experimental data on the shorter component
have not been accurately predicted.
equivalent number of entanglements for this component should

be about 3.5. However, the computer program can only calculate
chains with integral number of entanglements and we are forced

to use N = 3. The middle curve is a 50/50 (by weight) blend

e

of the two components. The two-plateau tendency in the rubbery

region of the dynamic storage moduli is successfully predicted.

and 6.16x105 respectively.

The reason is that the

(12)

(13)

4 (10-12).




In addition, the corresponding maximum near log @ = Q0 is also
in excellent agreement with data. These phenomena are
frequently observed for binary blends of two components having
very different molecular weights. Fig. 2 shows results on
another set of polystyrene binary blends by the same authors (19).
The blends are 20/80, 40/60, 60/40, 80/20 by weight. Here the
shorter component has a molecular weight corresponding to 2.5
entanglements. It is assumed to have 2 entanglements in our
calculations. Agreement between theory and experiment is again
very good.

Figure 3 compares the calculated curves with a set of
dynamic mechanical data on blends of poly(methyl methacrylate)
of molecular weights 4.1x103 and 1.74x104. The blends as in-
dicated by the middle curves are 90/10, 80/20, 60/40, 30/70
percent by weight, the first number in the pair of numbers is
the weight fraction pertaining to the lighter component. M0
for PMMA is assumed to be 7,000 (21). Agreement between theory
and experiments is good except that the experimental data exhibit
a more gradual terminal region, possibly due to its broader
heterogeneity index (H.I. = 1.25).

The stress relaxation moduli calculated by the well known

relation

-t/1 (14)
(&

are shown in Figure 4. Also given arve the experimental data

of Murakami and Ono (23) for monodisperse polystyrene fractions




with molecular weights of l.87x105 and 5.83x105, as well as their

72/25 and 50/50 blends. The agreement between theory and experiment
is good, except that the small second plateaus were not apparent
3 in the predicted curves.
To compute the steady-state shear compliance, we vecall that
by definition

| 0___ l\~2 nmy ‘!
| Jo = NKTY 1/ (NKTY 1) (15)

for a monodisperse polymer. For a binary blend, then

2 2
N:Z1T,; * NaitT,
Jg R e . SIS (16)
RT(N; Y1, + NpYu )

e T

where [i'S and lj'S are the relaxation times of components 1 and 2
respectively, and Nl,N2 are numbers of molecules of components 1

and 2 per unit volume. In other words,

2 2
Rl & €
T S (17)
NRT (£ 81, + fzrtlj)‘~

where fl and f2 are mole fractions of components 1 and 2, i.e.,

W, /M
1 1 and f., = 1-f

3 - wl/M1+w2/M2 5 1 The reduced steady-state shear

f

compliance for a binary blend is thus

. 2 e
oty o LoET
Vi) 2° "1 (18)

erR )2
3

(flkili + fzﬁl




Fi £
lgure 5 shows the Log JeR w2

blends of polystyrene. 1In addition to the data of Onogi (19) and

data for three sets of binary

Akovali (22), the more recent data of Porter and Prest (24) are also
included. Both the data of Onogi and those of Porter and Prest show
pronounced maxima, and are in fairly good agreement with our com-
puted curves. The molecular weights in the binary blend of Onogi

are 4.69x104, l.67x105 and those of Porter/Prest are 9.72x104,

5

4.11x10~. The molecular weights in the Akovali blend, on the other hand,

are 1.25x105, 2.67x105. The molecular weight ratio is much lower

than those in the former two blends. The JeR now exhibit a much
gentler maximum when plotted against wz. The computed curves are
still in reasonable agreement with the data, although the predicted
maximum is sharper. Of course, if the molecular weight ratios in
the binary blends decreases further toward unity, then a horizontal
straight line would eventually be reached (a monodisperse system).
Thus the trend is consistent with expectation. In Figure 6 we com-
pare similar data of poly(methyl methacrylate), which are seen to
be in excellent agreement with the theoretical curve.

The zero-shear viscosity can be computed from the relaxation

spectra by

e
o = N Zp Tp (20)

The computed values are then plotted in Figure 7 against the weight
average molecular weight of the blends containing different amounts of
the two component monodisperse polystyrene fractions. The predicted
curve is a straight line with a slope of 3.70, which is in good
agreement with the experimental data of polystyrene represented by

the circles (20).




The variation of the blend viscosity as a function of com-
position is an important engineering property and also a good
criterion for testing our theory. Friedman and Porter (23) reviewed
an exhaustive list of mixing rules, and compared them with experi-
mental data. Following their convention, we plot in Figure 8 the
viscosities of binary polystyrene blends against the weight fraction
of the heavier component. The circles are experimental data (19)
and the solid curves are the theoretical predictions. The numbers
in the parenthesis give the equivalent entanglement bead number
for the two components from which the blends are made of.

Agreement between theory and experiments is seen to be excellent.
Figures 9 and 10 show similar plots for two other polymer systems,
i.e., poly(methyl methacrylate) (21) and poly(dimethyl siloxane) (26).
Agreement is again very good.

For the cases examined above, all the viscosity - composition c
curves concave downwards. However, the polystyrene blends studied by
Akovali (22) revealed a somewhat sigmoidally-shaped curve. The only
significant difference between this blend and the others is that
the two components have a much smaller chain length difference in
the former (Figure 1ll1l) than in the latter (Figures 8-10). Interest-
ingly this trend is predicted by our theory (Figure 11). To further
scrutinize the effect of chain length differences between components
on the shape of the viscosity-composition curves, we show in Figure 12
the computed curves for a series of binary blends with varying
chain-length differences. We note that if the lengths of the two
components are not significantly different (up to a factor of two),

the curves are sigmoidal. The theory in fact predicts a minimum

- v 3
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in viscosity if the chains are of comparable lengths, which has

not been experimentally verified. The concave downward appear-
ance, on the other hand, will be observed for components whose
chain lengths differ more than a factor of two.

In conclusion, we can state that the transient network model
is successful in predicting the linear viscoelastic behavior of
monodisperse polymers (12) as well as their binary blends. The
important feature of the model for blends is that it is not
sufficient to just use some kind of mixing rules for the pure
components alone. Simple intuitive reflection of the binary system
will indicate that the cross entanglements between chains of
different lengths must also be taken into account. The good agree-
ment between the theoretical predictions and the literature data

appears to vindicate the validity of this model.
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Table 1:

Polymer

Polystyrene

Polystyrene

Polystyrene

Polystyrene

Polystyrene

Polystyrene

Resulting JeR and ng -

N+1 Ne
7 3
50/50 blend
69 34
7 2
80,/20 blend
60/40 o
40/60 4
20/50 X 3
21 10
23 11
75/25 blend
50/50 o
69 34
7 2

90/10 blend
80/20 "
70/30 i
60/40 <
40/60 5
20/80 "

i 10

15 7
90/10 blend
80/20 i
70/30 i
60/40 "
40/60 "
20/80 ”

31 15

13 6
90/10 blend
80/20 »

70/30 g
60/40 »
40/60 e
20/80 5
49 24

sL
j

4

"

Parameters Used in the Calculations and the

eR

0.333
0.101

0.409

0.269

0.402
3.759
3.824
2.842
2.073
1.115
0.591
0.265

0.336
0.828
1.023
0.871
0.692
0.445
0.291
0.193

0.396
2.313
1.808
1.246
0.874
0.474
0.261
0.131

20.

I
|O

0.972
1.92x10
7.69x103

0.508
3.52
1.13x10
2.37x10
4.09x10
6.29x10

8.50x10,
4.71x10

1.70x103
6.71x103

0.499
1.09
2.82
5.66
9.62
2.10x10
3.68x10
5.72x10

1.52x10
1.74x10
2.51x10
3.83x10
5.67x10
1.10x102
1.85x102
2.82x102

8.4
2.58x10
7.76x10
1.64x102
2.85xlo§
6.27x10
1.11x103
1.73x103




Table 1 (cont'd)

Poly (methyl- 13

Methacrylate) 90/10
80/20
70/30
60/40
40/80
20/80
51

Poly (dimethyl- 7

Siloxane) 80/20
60/40
40/20
20/80
79

blend

6

39

0.

0.
1.
2.
1.

410
369
143
428

0.994

oo

.532
.289
.127

1.04x10
4.03x10
.29x10%
.76x102
.82x102
.07x103
.90x10§
.05x10

NN

0.972
1.02x10§
6.61x10

2.44x103
6.72x103
9.75x103
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Figure 1.

Figure 2.

Figure 3.
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CAPTIONS OF THE FIGURES

Plots of dynamic storage moduli G' (w) and loss
moduli G" (w) vs frequency for polystyrene. The
solid curves are computed curves. The symbols are
experimental data (19). The two outer curves are
for the pure components. The numerals at the bottom
of the curves indicate the numbersof entangled beads.
The curve in the middle (triangles) is a 50/50 (by

weight) blend.

Plots of dynamic storage moduli G' (w) and loss
moduli G" (w) vs frequency for polystyrene. The
solid curves are computed curves. The symbols are
experimental data 19). The two outer curves are
for the pure components. The numerals at the bottom
of the curves indicate the numbers of entcngled beads.
The curves between those for pure components are

for 20/80, 40/60, 60/40, 80/20 (by weight) blends.

Plots of dynamic storage moduli G' (w) and loss
moduli G" (w) vs frequency for poly(methyl methacrylate).

The solid curves are computed curves. The symbols are

the experimental data (20). The outer two curves are
the pure components. The numerals at the bottom of
the curves indicate the numbers of entangled beads.
The curves between those of the pure components are

for 90/10, 80/20, 60/40, 30/70 (by weight) blends.




Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

23.

Stress relaxation moduli for polystyrene. The
solid curves are computed curves. The symbols
are experimental data (22). The two outer curves
are for the pure components. The ones between the
pure component curves are for 75/25, 50/50 (by

weight) blends.

Log-log plot of the reduced steady-state shear com-
pliance of polystyrene vs weight fraction of the
heavier component. Triangles, circles and squares are
experimental data by Porter (26), Onogi (19) and

Akovali (22) respectively. Curves were all computed
by theory.
Log-log plots of the reduced steady-~state shear

compliance of poly(methyl methacrylate) vs. weight
fraction of the heavier component. Circles are
data of Onogi (20). The curve was calculated by

theory.

Log-log plots of zero-shear-rate viscosity vs
molecular weight. The lines were the computed
curves. The circles are the experimental data (19)
for pure polystyrene components and blends, all of
which fall on the same straight line with a slope of
370 The triangles are data on poly(methyl metha-

crylates) (20).

Zero-shear viscosities of two polystyrene binary blend
systems as a function of the weight fraction of the
heavier component. Circles are experimental data of

Onogi (19). Solid curves are theoretical predictions.
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Figure 9.

Figure 10.

Figure 1l1.

Figure 12.

24.

Zero-shear viscosities of poly(methyl methacrylate)
binary blends as a function of the weight fraction
of the heavier component. Circles are experimental
data of Onogi (21). Solid curves are theoretical

predictions.

Zero-shear viscosities of poly(dimethyl siloxane)
binary blends as a function of the weight fraction
of the heavier component. Circles are experimental
data of Prest (25). Solid curves are theoretical

predictions.

Zero-shear viscosities of polystyrene binary blends
as a function of the weight fraction of the heavier
comp.nent. Cilrcles are experimental data of Akovali

(22). Solid curves are theoretical predictions.

Zero-shear viscosities of binary blends for five
different systems with different molecular weight
ratios between the two constituent components. The

curves are all calculated from the theory.
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